

IT3402C Triple Channel Rotary Encoder Kit

Product data

Features

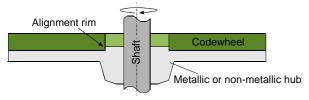
- · Highly miniaturized encoder
- Differential inductive sensing principle
- · Insensitive to magnetic interference fields
- · Robust against oil, water, dust, particles
- Ultra-thin encoder and codewheel (total < 2 mm)
- · Optional with cable, connector and holder

Applications

- Brushed and brushless motors
- · Industrial / laboratory / office automation
- · Rotary stages
- · Robotics, assembly equipment

Key Specifications

Description

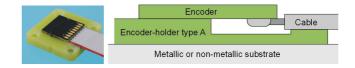

The IT3402C incremental encoder kit consists of an encoder and a codewheel (Fig. 1). The encoder consists of two integrated circuits in a PCB housing. It provides incremental A and B output signals in quadrature and an Index signal, which is synchronous to A and B (Fig. 2). The codewheel is a PCB with passive copper strips.

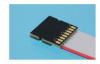
Resolution, maximum speed and airgap

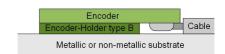
The resolution and the maximum speed of the encoder are user-programmable or can be programmed ex-factory. The resolution depends on a filter setting that limits the maximum speed of the encoder vs. the codewheel. The resolution also depends on the maximum distance between the encoder and the codewheel. Tables 2 and 3 allow the configuration of resolution and maximum speed for a certain maximum air-gap.

Codewheel

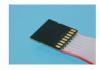
The codewheel is shown in Fig. 4 and is selected in Table 5. The codewheel may be mounted on a hub, using a rim for accurate positioning in front of the encoder.

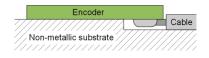



Encoder holders


Different encoder holder options are available and can be selected in Table 6.

The encoder holder **type A** (Fig. 5) may be mounted on any substrate using 4 screw-holes. It has a strain relief for the cable.




The encoder holder **type B** (Fig. 3) may be mounted on any substrate. Use half-holes on encoder PCB housing and alignment pins for accurate positioning.

The encoder without holder may be mounted on non-metallic substrates. Use half-holes on encoder housing and alignment pins for accurate positioning.

Encoder cable and connector

The encoder is supplied with a flat cable of pitch 1.27 mm and a connector (Fig. 6). The cable type and length and the connector type are selected in Tables 7 and 8.

3D models of encoder, holders and codewheels STEP and IGES 3D models available on www.posic.com.

Specifications

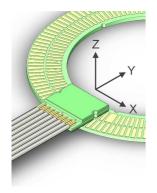
Recommended Operating Conditions

Parameter	Symbol	Remark	Min	Тур	Max	Unit
Supply voltage	VDD		4.5	5.0	5.5	V
Operating Temperature	T _A		-40		125	C
Airgap	Z			0.2		mm
Radial play + eccentricity	ΔΥ				0.1	mm
Axial play	ΔΖ				0.1	mm

Electrical Characteristics

Electrical characteristics over recommended operating conditions, typical values at VDD = 5.0 V, T_A = 25℃.

Parameter	Symbol	Remark	Min	Тур	Max	Unit
Supply current	IDD	No load	15	30	45	mA
Operating frequency	F	A/B signals, CC = 04 - 10 A/B signals, CC = 11 - 15			1000 100	kHz
Derating for F _{A/B} and for Max speed (Table 2)		Temp range 0 to 65℃ Temp range -20 to 100℃ Temp range -40 to 125℃			-8 -14 -20	%
High level output voltage	V _{OH}	I _L = 2 mA	VDD-0.5			V
Low level output voltage	V _{OL}	I _L = 2 mA			0.5	V
Rise time, fall time	t _r , t _f	C _L = 47 pF			20	ns


Encoding Characteristics

Encoding characteristics over recommended operating conditions, typical values at VDD = 5.0 V, $T_A = 25 \text{ C}$, airgap = 0.2 mm, speed = 10 RPM.

<u> </u>						
Parameter	Symbol	Remark	Min	Тур	Max	Unit
Pulse width error	ΔΡ	Nominal value 180℃		10	50	e
State width error	ΔS	Nominal value 90°e		10	60	e
Phase shift error	ΔΦ	Nominal value 90°e		10	45	°e

Linearity

For high-resolution high-precision applications, it is possible to linearize the encoder by means of a Look-Up Table (LUT) that is located inside the encoder. The LUT can be programmed in volatile or in non-volatile memory by means of the Evaluation and Programming Tool (EPT) or it can be pre-programmed ex-factory. The LUT option is selected in Table 4.

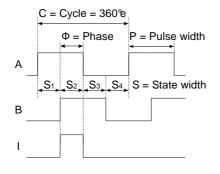


Fig. 1 Coordinate system XYZ.

Fig. 2 Encoder output signals A and B in quadrature and Index.

Definitions

Airgap Distance between encoder and codewheel

in Z-direction. See Fig. 1.

Cycle One A quad B period, see Fig. 2.

CPP Cycles per codewheel-period.

'e Electrical degree (one Cycle is 360'e)

Phase shift Φ Number of electrical degrees between

se shift Φ Number of electrical degrees between the center of the high state of channel A and the center of high state of channel B.

Nominal 90°e. Fig. 2.

Pulse width P Number of electrical degrees that an output is high during one cycle. Nominal

180°e. Fig. 2.

State width S Number of electrical degrees between two

neighboring A and B transitions. Nominal

value is 90°e. See Fig 2.

Technical drawings

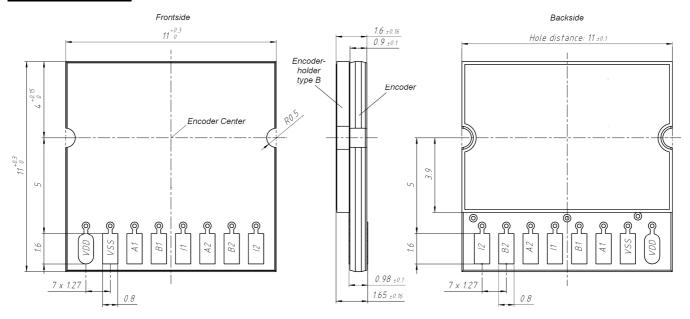


Fig. 3 Dimensions of IT3402 encoder on encoder-holder type B. The "Encoder center" must be centered with respect to the "Readout radius" of the Codewheel (Fig 4)

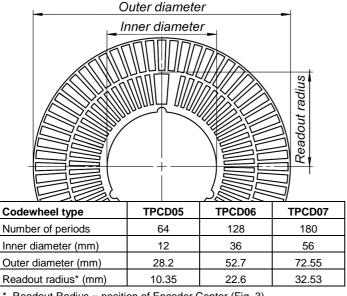


Fig. 4 Codewheel dimensions.

Cable length

1

2

3.2 ±0.2

A

-0.01

2 x Ø 1-0.03

15 ±0.05

11 ±0.05

17 ±0.05

10.2

A

-0.01

2 x Ø 1-0.03

Fig. 5 Encoder Holder type A (see Table 6).

Connector pin	Ivaille	Description
1	VDD	5V Supply
2	VSS	Ground
3	A1	
4	B1	For programming purposes
5	I1	F - F
6	A2	Output A
7	B2	Output B
8	12	Output Index

Fig. 6 Encoder with flat cable (pitch 1.27 mm) and 8-pin DIN41651 connector.

^{*} Readout Radius = position of Encoder Center (Fig. 3) Codewheel thickness 0.73 mm +/- 10%

IT3402C

Ordering information

Ordering code: IT3402C-ABBCCD-EEEEE-F-GGG-HH Orientation Table 1 BB Table 2 Maximum speed CC Table 3 Resolution D Look-Up Table Table 4 EEEEE Table 5 Codewheel Table 6 Encoder holder GGG Cable Table 7 ΗН Connector Table 8

Table 1: Orientation. Arrows indicate direction of movement of codewheel with rising edge A prior to B.

Α	Orientation
0	Not progr.
3	0°

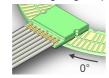


Table 2: Maximum speed

Max	NA		
Nr. of pe	Max value CC		
64	128	180	00
Not pro	grammed		
4	2	1	15
8	4	2	15
16	8	5	14
33	16	11	13
67	33	23	12
134	67	47	11
269	134	95	10
539	269	191	10
4'313	2'156	1'533	10
8'626	4'313	3'067	9
	Nr. of pe 64 Not pro 4 8 16 33 67 134 269 539 4'313	Nr. of periods on Co 64 128 Not programmed 4 2 8 4 16 8 33 16 67 33 134 67 269 134 539 269 4'313 2'156	Not programmed 4 2 1 8 4 2 16 8 5 33 16 11 67 33 23 134 67 47 269 134 95 539 269 191 4'313 2'156 1'533

^{*}Max speed valid at 25℃, temp. derating in specs, page 2. Lower Max speed leads to a lower jitter of the A/B outputs.

Table 3: Resolution

	Res	solution C	PR	Max	Max
CC	Nr. of pe	riods on Co	dewheel	value	Airgap*
	64	128	180	BB	(mm)
00	Not pro	grammed			
04	256	512	720	21	0.6
05	512	1'024	1'440	21	0.6
06	1'024	2'048	2'880	21	0.5
07	2'048	4'096	5'760	21	0.5
80	4'096	8'192	11'520	21	0.4
09	8'192	16'384	23'040	21	0.4
10	16'384	32'768	46'080	20	0.3

11	32'768	65'536	92'160	06	0.3
12	65'536	131'072	184'320	05	0.2
13	131'072	262'144	368'640	04	0.2
14	262'144	524'288	737'280	03	0.2
15	524'288	1'048'576	1'474'560	02	0.2

^{*} Recommended airgap = 0.2 mm. Sequence of A and B transitions is correct up to Max Airgap, but encoding specifications may be out of range.

Table 4: Look-Up Table (LUT)

Tubio	1: 200K 0P 14510 (201)
D	Look-Up Table programmed in OTP
0	Not programmed
1	LUT according to codewheel, to be specified
8	Custom LUT, to be specified
9	Default LUT, no codewheel specified

Table 5: Codewheel (see Fig. 4)

Ε	EEEE	Codewheel	Description
0	00000	No codewh	eel
0	5064	TPCD05	64 periods, OD 28.2 mm
0	6128	TPCD06	128 periods, OD 52.7 mm
0	7180	TPCD07	180 periods, OD 72.6 mm

Table 6: Encoder holder

F	Encoder holder
0	No holder
Α	Holder A (Fig. 5)
В	Holder B (Fig. 3)

Table 7: Cable

Tubic 7.	Cabic
GGG	Cable
000	No cable
0xx	Flat ribbon cable, -20 to 100℃, length xx cm
1xx	Flat ribbon cable, -40 to 125℃, length xx cm

Table 8: Connector

НН	Connector*
00	No connector
03	14-pin connector DIN 41651
04	8-pin connector DIN 41651 (Fig. 6)
05	10-pin connector DIN 41651

^{*} Connector temperature range -20 to +100°C

© Copyright 2017 POSIC. All rights reserved. No part of this document may be reproduced without the prior written consent of POSIC. Products and companies mentioned in this document may be trademarks or registered trademarks of their respective owners. Information in this document is believed to be accurate and reliable and may be changed without notice. No responsibility is assumed by POSIC for its use, nor for infringements of patents or other rights of third parties which may result from its use. Some commercial or geographical restrictions may apply to the sale of this product. No license is granted by implication or otherwise under any patent or patent rights of POSIC. In no event shall POSIC, its employees, its contractors, or the authors of this document be liable for special, direct, indirect, or consequential damage, losses, costs, charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind. POSIC products are not designed, intended, authorized or warranted to be suitable for use in life-support applications, devices or systems or other critical care applications. Inclusion of POSIC products in such applications is understood to be undertaken solely at the customer's own risk. Should a customer purchase or use POSIC products for any such unauthorized application, the customer shall indemnify and hold POSIC and its officers, employees, subsidiaries, affiliates, representatives and distributors harmless against all claims, costs, damages and attorney fees which could arise.